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The use of chemical and physical sunscreening agents has increased dramatically during the last
two to three decades as an effective means of preventing sunburn. The use of high sun-
protection factor sunscreens has also been widely promoted for the prevention of skin cancer,
including melanoma. Whereas sunscreens are undoubtedly effective in preventing sunburn, their
efficacy in preventing skin cancer, especially melanoma, is currently under considerable debate.
Sunscreens have been shown to prevent the induction of DNA damage that presumably results
from the direct effects of ultraviolet radiation (UVR) on DNA. DNA damage has been identified as
an initiator of skin cancer formation. However, both laboratory and epidemiological studies
indicate that sunscreens may not block the initiation or promotion of melanoma formation. These
studies suggest that the action spectrum for erythema induction is different than the action
spectrum for the induction of melanoma. Indeed, recent reports on the wavelength dependency
for the induction of melanoma in a fish model indicate that the efficacy of ultraviolet A
wavelengths (320-400 nm) to induce melanoma is orders of magnitude higher than would be
predicted from the induction of erythema in man or nonmelanoma skin tumors in mice. Other
strategies for the chemoprevention of skin cancer have also been reported. Low levels and degree
of unsaturation of dietary fats protect against UVR-induced skin cancer in mice and humans.
Compounds with antioxidant activity, including green tea extracts (polyphenols), have been
reported to inhibit UVR-induced skin carcinogenesis. - Environ Health Perspect 105(Suppl 4):
981-984 (1997)
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Solar ultraviolet radiation (UVR) induces a
number of pathologic changes initiated in
mammalian skin, including erythema,
edema, hyperplasia, sunburn cell formation,
immune suppression, and skin cancer.
Chemical and physical screening agents have
been developed over the last two decades for
the prevention of sunburn and skin cancer.
Sunscreens also prevent the induction of
DNA damage. Dietary lipids and topically
and orally administered antioxidants have
been reported to reduce the formation of skin
cancer and suppression of the immune
system following exposure to UVR.
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Sunscreening Agents
Skin Cancer

A number of studies have shown that
sunscreens are effective in the prevention of
UVR-induced skin cancers in mice (1-6).
Evidence supporting the capacity of sun-

screening agents to prevent UVR-induced
skin cancers in humans is less extensive and,
in the case of melanoma, is controversial.
Daily application of sunscreens for 1 year

(7) and 2 years (8) resulted in a significant
decrease in the appearance of actinic ker-
atoses, the putative precursor lesion for
squamous cell carcinomas in humans.
There appears to be no evidence to support
the notion that use of sunscreens prevents
the induction of melanoma in humans
(9-13). In fact, Garland et al. (14)
recently proposed that increased use of
sunscreens that protect efficiently against
ultraviolet B (UV-B), but not ultraviolet A
(UV-A), is responsible, at least in part,
for the increased incidence of melanoma.
UV-B includes those wavelengths of UVR
between 280 and 320 nm. UV-A includes
those wavelengths of UVR between 320

and 400 nm. Garland and co-workers
reason that the use of sunscreens that are
very effective in preventing sunburn results
in increased exposure to UV-A during
extended hours spent outdoors. This
hypothesis would require that the action
spectrum for melanoma induction deviate
from the action spectrum for sunburn for-
mation. If these action spectra were the
same, sunscreens protective against sunburn
would be equally protective against mela-
noma (15). An action spectrum is the rela-
tive response of a system to different
wavelengths of radiation.

Setlow et al. (16) have determined an
action spectrum for the induction of
melanoma in a fish model. They reported
that melanomas were readily induced at
365, 405, and probably 436 nm-wave-
lengths of UV-A and visible radiation
that are not strongly absorbed by DNA.
However, melanomas that develop in the
fish may arise from atypical melanocytes
and may not be equivalent to human
melanoma. The relative sensitivities for
melanoma induction in fish at these wave-
lengths were several orders of magnitude
greater than the sensitivities for erythema
induction in humans by the same wave-
lengths. Setlow et al. (16) conclude that
the general shape of the action spectrum
for transforming fish melanocytes should
be the same for transforming mammalian
melanocytes. Based on this action spec-
trum, Setlow and colleagues have calcu-
lated that 90 to 95% of human melanoma
induction by natural sunlight may be
caused by wavelengths > 320 nm. Thus,
use of conventional sunscreens would be
ineffective in preventing melanoma and the
use of such screens could result in an
increased exposure to melanoma-inducing
wavelengths (17). Increased exposure to
melanoma-inducing wavelengths could
also result from the use of artificial tanning
devices. Devices currently used for tanning
emit mainly UV-A radiation at intensities
capable of stimulating pigmentation fol-
lowing relatively short exposure times
(< 60 min). The results of studies to date
have been inconsistent in defining an asso-
ciation between the use of tanning devices
emitting UV-A radiation and malignant
melanoma (18-22). However, results from
a recent study in Sweden indicate a causal
relationship between the use of tanning
devices and malignant melanoma, espe-
cially in individuals under the age of 30
(23). A small dose response was evident in
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this study. Individuals who used sunbeds
or sunlamps more than 10 times per year
had a higher risk for malignant melanoma
than those individuals who were exposed
1 to 10 times per year.

Although the factors that influence the
induction of melanoma appear more com-
plex than those involved in the induction
of nonmelanoma skin cancer, the bulk of
evidence supports the hypothesis that the
recent increase in melanoma is related to
increased exposure to UVR and that this
may be the result of exposure to UV-A
rather than UV-B wavelengths. It has been
estimated that at least 65% of the mela-
nomas that occurred worldwide in 1985
were caused by solar exposure (24).

DNA Damage
DNA damage, particularly the cyclobutane
pyrimidine dimer, has been implicated as
the initiating event for UVR-induced
tumorigenesis. Photoreactivation repair, a
light-dependent repair pathway specific for
dimerized pyrimidines, reportedly prevents
UVR-induced tumorigenesis in fish
(25,26) and opossums (27,28). Similarly,
topical application of a DNA excision
repair enzyme stimulates the repair of
pyrimidine dimers (29) and delays the
onset of UVR-induced skin tumors (29,30)
in mice. Sunscreening agents reportedly
prevent the induction of pyrimidine dimers
in murine and human epidermal DNA.
Suzuki (31) observed little or no protection
from DNA damage with topical application
of p-aminobenzoic acid (PABA) (1 %) and
urocanic acid (1%), but titanium dioxide at
1 and 5% appeared to provide 100% pro-
tection. A sunscreen formulation with a sun
protection factor (SPF) of 15 reduced the
induction of pyrimidine dimers in sun-
screen-treated skin by a factor of approxi-
mately 50 upon exposure to solar-simulated
radiation (32). Treatment of human skin
with an SPF 10 sunscreen was reported to
provide "excellent" protection against the
induction of thymine dimers (33). PABA
(8%), 2-ethylhexyl-p-methoxycinnamate
(7.5%), and benzophenone-3 (6%) were
determined to have SPFs of > 8, . 8, and
.4, respectively, and to suppress the induc-
tion of DNA damage by 91, 86, and 67%,
respectively (34).

Dietary Lipids
A number of studies have implicated
dietary fat in the induction and develop-
ment of tumors of various organs, includ-
ing the skin. As early as 1939, Baumann
and Rusch (35) observed that animals fed

high-fat diets were more susceptible to
UVR-induced skin tumors than animals
on low-fat diets. This study was not well
controlled, and it was not until 1983 that
a carefully controlled nutritional study of
the relationship of dietary lipids to UVR
carcinogenesis was published (36). In this
study, animals receiving hydrogenated
corn oil demonstrated a significantly
greater tumor latency period and fewer
tumors per animal than those animals
receiving comparable levels of unsaturated
corn oil. Similarly, a series of studies car-
ried out by Reeve and co-workers (37)
showed that mice fed 20% saturated fat
were almost completely protected from
UVR carcinogenesis, compared to animals
on a 20% unsaturated fat diet. Further-
more, when saturated fat-fed mice were
exposed to UVR and then subsequently
fed a diet containing unsaturated fat, mul-
tiple latent tumors appeared. The authors
interpreted these results to mean that
tumors initiated by UVR remained latent
in the epidermis and were not expressed
until the amount of unsaturated fat in the
diet increased.

Black et al. (38) later demonstrated a
near linear relationship between lipid level
intake and tumor latency, i.e., tumor
latency decreased with increases in lipid
intake. Furthermore, increasing lipid
intake was accompanied by an increase in
numbers of tumors per animal. The influ-
ence of dietary lipids on susceptibility to
photocarcinogenesis appears to involve
more than level of lipid intake and degree
of fatty acid unsaturation. Menhaden oil,
an n-3 polyunsaturated fatty acid, signifi-
cantly inhibited photocarcinogenesis in
mice when compared to an equivalent level
of n-6 fatty acid (39).
We recently used the opossum

UVR/carcinogenesis model to investigate
the role of dietary fat in susceptibility to
UVR-induced melanoma. Four groups of
age-, sex-, and litter-mate-matched opos-
sums maintained on four diets containing
varying levels and types of fat were exposed
3 times per week to suberythemal doses of
UVR. Animals were scored for the appear-
ance of melanotic skin tumors, non-
melanoma skin tumors, and corneal
tumors. The fat composition of the four
isocaloric diets were: diet 1, 3.5% corn oil
(polyunsaturated fat); diet 2, 7% corn oil;
diet 3, 14% corn oil; and diet 4, 14% lard
(saturated fat). No significant differences
were observed among the four groups in
the time to appearance of nonmelanoma
skin tumors or corneal tumors. However,

the influence of dietary fat on susceptibility
to UVR-induced melanotic tumors was
dramatic. No UVR-induced melanotic
tumors were observed in animals main-
tained on a saturated fat (lard) diet. The
development of UVR-induced melanotic
lesions was similar in animals maintained
on the three corn oil diets.

Black and co-workers recently reported
that a 2-year, low-fat intervention regimen
resulted in a significant reduction in the
occurrence of actinic keratosis (40) and
nonmelanoma skin cancer (41) in individ-
uals who had had a previous nonmelanoma
skin cancer.

Although the precise mechanisms by
which dietary lipids influence the photo-
carcinogenic process remain unknown,
lipid peroxidation and modulation of the
immune system may be involved.

Antioxidants
A number of compounds with antioxidant
properties also have been shown to be anti-
carcinogenic. Of four selected phenols,
butylated hydroxytoluene and vanillin sig-
nificantly inhibited UVR carcinogenesis in
mice (42). Two closely related phenols,
butylated hydroxyanisole and propyl gal-
late, had no effect on the photocarcinogenic
process (42).

Green tea extracts reportedly inhibit
UVR-induced skin cancer in mice when
applied topically or orally (43-45). The
polyphenolic epicatechin and epicatechin
derivatives are thought to be the ingredi-
ents in green tea extracts responsible for
decreased susceptibility to UVR-induced
tumorigenesis (46).

Ascorbic acid (47), 3-carotene (48),
a-tocopherol (49), and selenium (50) have
exhibited antiphotocarcinogenic activities,
possibly due to their antioxidant properties.
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